56 research outputs found

    Decision Fusion for Structural Damage Detection: Numerical and Experimental Studies

    Get PDF
    This paper describes a decision fusion strategy that can integrate multiple individual damage detection measures to form a new measure, and the new measure has higher probability of correct detection than any individual measure. The method to compute the probability of correct selection is presented to measure the system performance of the fusion system that includes the presented fusion strategy. And parametric sensitive studies on system performance are also conducted. The superiority of the fusion strategy herein is that it can be extended to deal with the multiresolution subdecision or blind adaptive detection, and corresponding methodologies are also provided. Finally, an experimental setup was fabricated, whereby the vibration properties of damaged and undamaged structures were measured. The experimental results with the undamaged structural model provide information for producing an improved theoretical and numerical model via model updating techniques. Three existing vibration-based damage detection methods with varied resolutions were utilized to identify the damage that occurred in the structure, based on the experimental results. Then the decision fusion strategy was implemented to join the subdecisions from these three methods. The fused results are shown to be superior to those from single method

    Efficient Oblivious Sorting and Shuffling for Hardware Enclaves

    Get PDF
    Oblivious sorting is arguably the most important building block in the design of efficient oblivious algorithms. We propose new oblivious sorting algorithms for hardware enclaves. Our algorithms achieve asymptotic optimality in terms of both computational overhead and the number of page swaps the enclave has to make to fetch data from insecure memory or disk. We also aim to minimize the concrete constants inside the big-O. One of our algorithms achieve bounds tight to the constant in terms of the number of page swaps. We have implemented our algorithms and made them publicly available through open source. In comparison with (an unoptimized version of) bitonic sort, which is asymptotically non-optimal but the de facto algorithm used in practice, we achieve a speedup of 2000 times for 12 GB inputs

    Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation

    Get PDF
    Recent studies have unequivocally identified multipotent stem/progenitor cells in mammary glands, offering a tractable model system to unravel genetic and epigenetic regulation of epithelial stem/progenitor cell development and homeostasis. In this study, we show that Pygo2, a member of an evolutionarily conserved family of plant homeo domain–containing proteins, is expressed in embryonic and postnatal mammary progenitor cells. Pygo2 deficiency, which is achieved by complete or epithelia-specific gene ablation in mice, results in defective mammary morphogenesis and regeneration accompanied by severely compromised expansive self-renewal of epithelial progenitor cells. Pygo2 converges with Wnt/β-catenin signaling on progenitor cell regulation and cell cycle gene expression, and loss of epithelial Pygo2 completely rescues β-catenin–induced mammary outgrowth. We further describe a novel molecular function of Pygo2 that is required for mammary progenitor cell expansion, which is to facilitate K4 trimethylation of histone H3, both globally and at Wnt/β-catenin target loci, via direct binding to K4-methyl histone H3 and recruiting histone H3 K4 methyltransferase complexes

    Natural Products from Actinomycetes Associated with Marine Organisms

    No full text
    The actinomycetes have proven to be a rich source of bioactive secondary metabolites and play a critical role in the development of pharmaceutical researches. With interactions of host organisms and having special ecological status, the actinomycetes associated with marine animals, marine plants, macroalgae, cyanobacteria, and lichens have more potential to produce active metabolites acting as chemical defenses to protect the host from predators as well as microbial infection. This review focuses on 536 secondary metabolites (SMs) from actinomycetes associated with these marine organisms covering the literature to mid-2021, which will highlight the taxonomic diversity of actinomycetes and the structural classes, biological activities of SMs. Among all the actinomycetes listed, members of Streptomyces (68%), Micromonospora (6%), and Nocardiopsis (3%) are dominant producers of secondary metabolites. Additionally, alkaloids (37%), polyketides (33%), and peptides (15%) comprise the largest proportion of natural products with mostly antimicrobial activity and cytotoxicity. Furthermore, the data analysis and clinical information of SMs have been summarized in this article, suggesting that some of these actinomycetes with multiple host organisms deserve more attention to their special ecological status and genetic factors

    Fall Detection Using Plantar Inclinometer Sensor

    No full text
    In this paper, we report a method of fall detection using plantar inclinometer sensor, which provides us the information of angle variations during walking, and of angle status after a fall. We analyzed the normal range of angle variations during walking, and selected the thresholds by testing the distribution of plantar angles after falls. In the experiments, thresholds were selected from plantar angles of fall status in four directions: forward, backward, left and right. Using the selected thresholds, we detected falls in different situations for one hundred times and obtained the detection rate of 92%

    Comparison of the physiological responses and time-motion characteristics during football small-sided games: effect of pressure on the ball

    Get PDF
    Introduction: This study aimed to compare the effects of pressure on the ball on physiological responses and time-motion characteristics during football small-sided games between elite youth male players.Methods: 56 elite male youth football players (age: 15.43 ± 0.52 years) performed a 2+GK vs. 2+GK game on a 30 m × 15 m pitch area with two playing conditions: 1) free play (FP), the player has no limitation to play; 2) pressure on the ball (PB), the player has directly and aggressively closed down space (located within 1.5 m) between themselves and the opposition player with the ball and can compete for possession. The percentage of time spent in different maximum heart rate (HRmax) zones, mean heart rate, blood lactate acid concentration, total distance covered, distance covered in three speed zones (sprint, high speed, and moderate speed), number of high speed runs, number of sprint runs, top speed, number of direction changes, and ball recovery time were monitored.Results: We found very significantly higher number of high speed runs (p < 0.001; ES = 1.154), number of direction changes (p < 0.001; ES = 2.347), ball recovery time (p < 0.001; ES = 3.529), percentage of time spent in 90%–100% HRmax (p < 0.001; ES = 3.033), mean heart rate (p < 0.001; ES = 1.940), blood lactate acid concentration (p < 0.001; ES = 2.245) and significantly higher high speed running distance covered (p = 0.004; ES = 0.520) in the PB condition. Conversely, the FP condition showed very significantly higher moderate speed running distance covered (p < 0.001; ES = 1.814) and significantly higher percentage of time spent in 80%–90% HRmax (p = 0.012; ES = 0.440). No significant differences were revealed on sprint running distance covered (p = 0.407; ES = 0.140), number of sprint runs (p = 0.103; ES = 0.279), top speed (p = 0.130; ES = 0.258) and percentage of time spent in 60%–70% HRmax (p = 0.106; ES = 0.276), 70%–80% HRmax (p = 0.358; ES = 0.155).Discussion: We found that pressure on the ball had a substantial impact on the intensity of training, as evidenced by a significantly increased high speed running performance, number of directional changes, percentage of time spent at 90%–100% of maximum heart rate, mean heart rate, and blood lactate acid concentration. Additionally, ball recovery time decreased significantly

    Table_2_Screening and identification of tissue-infiltrating immune cells and genes for patients with emphysema phenotype of COPD.xlsx

    No full text
    ObjectiveTo study the tissue-infiltrating immune cells of the emphysema phenotype of chronic obstructive pulmonary disease (COPD) and find the molecular mechanism related to the development of emphysema to offer potential targets for more precise treatment of patients with COPD.MethodsCombined analyses of COPD emphysema phenotype lung tissue-related datasets, GSE47460 and GSE1122, were performed. CIBERSORT was used to assess the distribution of tissue-infiltrating immune cells. Weighted gene co-expression network analysis (WGCNA) was used to select immune key genes closely related to clinical features. Rt-qPCR experiments were used for the validation of key genes. Emphysema risk prediction models were constructed by logistic regression analysis and a nomogram was developed.ResultsIn this study, three immune cells significantly associated with clinical features of emphysema (FEV1 post-bronchodilator % predicted, GOLD Stage, and DLCO) were found. The proportion of neutrophils (p=0.025) infiltrating in the emphysema phenotype was significantly increased compared with the non-emphysema phenotype, while the proportions of M2 macrophages (p=0.004) and resting mast cells (p=0.01) were significantly decreased. Five immune-related differentially expressed genes (DEGs) were found. WGCNA and clinical lung tissue validation of patients with emphysema phenotype were performed to further screen immune-related genes closely related to clinical features. A key gene (SERPINA3) was selected and included in the emphysema risk prediction model. Compared with the traditional clinical prediction model (AUC=0.923), the combined prediction model, including SERPINA3 and resting mast cells (AUC=0.941), had better discrimination power and higher net benefit.ConclusionThis study comprehensively analyzed the tissue-infiltrating immune cells significantly associated with emphysema phenotype, including M2 macrophages, neutrophils, and resting mast cells, and identified SERPINA3 as a key immune-related gene.</p

    Dynamic dual-crosslinking antibacterial hydrogel with enhanced bio-adhesion and self-healing activities for rapid hemostasis in vitro and in vivo

    No full text
    Bio-adhesives based on natural polymer silk fibroin (SF) are high-profiled in the development of rapid hemostatic agents because of their good biocompatibility and biodegradability. However, the lack of bioactivity, mechanical and bio-adhesion performance, restrict their use in the biomedical field. Herein, based on the dynamic dual-crosslinking mechanism, we fabricated a silk microfibers (SMFs)-based multifunctional hemostatic hydrogel by incorporating tannic acid-coated SMF (TA@SMF) motifs into the network of poly(vinyl alcohol)-borax (PB) hydrogel. The cohesion-enhancing strategy, along with dynamic borate-diol bonds and hydrogen bonds, synergically provide the hydrogel with enhanced bio-adhesion and self-healing properties. TA@SMF/PB gel has an elongation at break of more than 600% and adheres to pig skin even after 24 h immersion in water. In vitro experiments have shown good antibacterial, antioxidant, biocompatibility, and hemostatic properties of the TA@SMF/PB gel. In vivo degradation and mouse liver hemostatic test further verified its biosafety and rapid hemostasis performance. The hemostatic time of 42.0 ± 4.9 s in [email protected] was significantly shorter than that in other experimental groups. This study is the original report for functionalizing SMFs with TA as a hemostasis material, which affords a versatile SMF-based toolkit that provides promising candidate materials for rapid hemostatic and infectious wound healing
    • …
    corecore